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LETTER TO THE EDITOR 

The percolation probability for the site problem on the 
triangular lattice 

M F Sykes, Maureen Glen and D S Gaunt 
Wheatstone Physics Laboratory, Kings College, London, Strand WC2, UK 

Received 17 April 1974 

Abstract. The percolation probability for the site problem on the triangular lattice is 
investigated by series methods. It is concluded that P(p) vanishes near the critical point 
like (p-p,)!' with /3 =0.14*0.03. 

A general introduction to the theory of random mixtures and percolation processes, 
together with a survey of the recent literature, is given in the reviews by Shante and 
Kirkpatrick (1971) and by Essam (1972). We assume a general familiarity with these 
problems such as may be derived from these articles. There is a close formal analogy 
between the mean number and size of finite clusters and the percolation probability 
in a random mixture on the one hand, and the free energy, initial susceptibility and 
spontaneous magnetization in a ferromagnet on the other. It has been suggested that 
random mixtures will exhibit scaling law behaviour (Kasteleyn and Fortuin 1969, 
Essam 1972); critical exponents are therefore of special theoretical interest. Rudd and 
Frisch (1970) attempted to estimate critical behaviour from existing Monte Carlo data 
for percolation probabilities; however they were unable to find a reliable procedure 
for removing both the systematic and random errors from the data, and reached no 
firm conclusions. It would seem natural to attempt a precise investigation of critical 
behaviour along the same general lines that have proved successful with analogous 
functions for the king model; for these most of the evidence on critical indices has been 
obtained from series expansions and a few exact results. 

One important set of critical exponents refers to the high density region p > p ,  
(Essam 1972); before undertaking a comprehensive investigation we have made a pilot 
study of the percolation probability for the site problem on the triangular lattice. Our 
objective has been to determine whether an adequate number of coefficients can be 
derived and whether their behaviour makes extrapolation possible. We have chosen 
the site problem on the triangular lattice because the critical concentration is known 
exactly (Sykes and Essam 1964) and the lattice is well suited to the derivation of series 
of useful length. We have already found that in the low density region, p c p , ,  series 
expansions are in general less well behaved than the corresponding Ising series (Sykes 
et al 1973). 

We suppose the sites of the triangular lattice are occupied with probability p .  We 
study the percolation probability P(p)  defined as the probability that an occupied site, 
chosen at random, will be connected to infinitely many others ; below the critical concen- 
tration p ,  this probability is zero. When p is close to unity the percolation probability 
may be expanded as a development in powers of q = 1 - p  by the general methods 
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proposed by Domb (1959) and described by Sykes and Essam (1964) and Essam (1972). 
We have derived the expansion : 

P(p) = 1 -q6  - 6qs - 27q'O + 6q' ' - 11 lq" + 72q13 - 534q14 + 638q15 - 2868q16 

+5004q'7-17408~'8+36162~'9-106035~20. .  . . (1) 

It is to be supposed that this expansion is convergent up to some q' > 0. From the general 
behaviour of the coefficients it seems that q' cannot be identified with qc = 1 - p , ;  a 
regular alternation in sign suggests a singularity on the negative axis. This is confirmed 
by the Dlog Pade approximants. The closest (and dominant) singularity to the origin 
q = 0 is indicated on the negative real axis at q* N -0.37 kO.06; the closest singularity 
on the positive real axis is indicated close to the exact value q, = 3. There are also 
indicated a number of pairs of singularities in the complex plane, on or close to the 
circle (4) = 3, whose position is difficult to estimate with any precision. In tables 1 and 2 
we give the diagonal and paradiagonal sequences for the dominant and physical singu- 
larities. 

On the assumption that near p ,  the percolation probability vanishes as a power law 
we write 

(2) 
and form estimates for /3 from the Pade approximants to (q -  q,) d log P/dq evaluated 
at 4,  = 3. We give these in table 3. It seems reasonable to conclude that 

P(P) IV BO, - P J P  

/? N 0.14f0.03. (3) 

Table 1. Dlog Pade analysis: closest singularity to the origin. Estimates of q* (and the 
corresponding residues) from the Padt approximants to d log Pidq. 

5 - -0.4332 (0.0340) -0.3921 (0,0108) 
6 -0.4083 (0.0174) -0.4153 (0.0211) -0.4049 (0.0156)t 
7 -0.4102 (0.0183)t -0.4261 (0.0278)tf -0.3558 (0.0027) 
8 -0.3891 (0.0101) -0.3794 (0.0073) -0,3761 (0.0064) 
9 -0,3734 (0.0056) - 0.41 30 (0.0127)$ -0.3737 (00058) 

10 -0,3710 (0.005l)t 

t Defect on positive axis. 
3 Defect on negative axis. 

Table 2. Dlog Padt analysis: closest singularity to the origin on the positive real axis. 
Estimates of 4e (and the corresponding exponent) from the poles and residues of the Pade 
approximants to d log Pi@. 

n [n - l in ]  [ninl [n + linl 

6 None 0.46463 (0.0346) None 
7 None None None 

9 0.4795 1 (0.0703) 0.48555 (0.0844)f None 
8 0.45387 (0.0357) 0.50058 (0.1337) 0.46818 (0.0496) 

10 0.47448 (0.0615)t 
~ ~~ 

t Defect on positive axis. 
$ Defect on negative axis. 
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Table 3. Pade estimates of /3 from (q - q c )  d log P / d q  using knowledge that qc = i 

n [n - l/n] [dn l  [n+ lh]  

5 - 0.1304 0.0674 
6 0.0923 0.073 1 0.067 1 t 
7 0.0902: 0.10935 0.1312 
8 0,1681 0,1311 0.1 3 12$ 
9 0.1 396 0,1458 0.13535 

10 0.1405$$ 

t Defect on positive axis. 
$ Defect on negative axis. 
0 Defect in complex plane. 

The limits of uncertainty are of necessity rather wide because of the presence of so 
many non-physical singularities, especially the dominant one at q* - -0.37. The 
hypothesis that B = $, the exact value for the spontaneous magnetization of the two- 
dimensional Ising model, cannot be excluded. To calculate the function numerically 
we write 

P(P) = B*(q)(q,-q)0'14 (4) 
and evaluate Pade approximants to the series for (q ,  -q)[P(p)]- 110"4 in the interval 
0 < q < q,. Figure 1 is based on the [9/9] approximant but other high order approxi- 
mants give consistent .results to within graphical accuracy. The function has the general 
appearance of a spontaneous magnetization curve with a characteristically sharp cut-off 
at the critical point. The critical amplitude corresponding to the [9/9] approximant is 

From the investigation we have briefly reported we draw the general conclusion 
that the critical index p is accessible by the method of series expansions and their 
extrapolation by Pade approximants. The series expansions in the high density region 
are not very well behaved and do not in general converge up to q c .  A comprehensive 

B*( i )  = 1.572. 

qlqc 

Figure 1. Percolation probability for the site problem on the triangular lattice as a function 
ofqlq,. 
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analysis of site and bond problems on a variety of two-dimensional lattices, together 
with the hypothesis that the index is a dimensional invariant (Shante and Kirkpatrick 
1971), seems likely to result in a narrowing of the uncertainties on the value of 8. We 
are undertaking such an analysis ; preliminary results for other lattices are consistent 
with (3) and have not so far conflicted with the hypothesis that 8 is a dimensional 
invariant. 

This research has been supported by a grant from the Science Research Council. 
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